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ABSTRACT 

In this paper, several typical situations of longitudinal motion in syn- 
chrotron design and operation are studied. The study is based on a unified 
beam dynamic model of synchrotron oscillation under phase and radial 
feedbacks. Cases studied include frequency error, lock-in range, bunch 
excursion, phase manipulation, injection and field errors. 
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I. Introduction 

In a synchrotron, particles having energy deviation from the’ synchronous particle 

(s.p.) execute synchrotron oscillation around the s.p.[l]. The longitudinal synchrotron 

motion of the bunch as a whole in the absence of beam control can be regarded as a 

second order oscillatory system. With phase and radial controls, the beam can be 

manipulated by controlling the energy gain per turn in passing through the RF cavi- 

ties, and thus the synchrotron motion can be modified to provide damping and to give 

rise to smaller radius and phase errors. 

The problems and methods of RF bea.m control have been extensively discussed 

in past (Z-81. 0 ur study here is based on a unified beam dynamic model of 

* Work performed under the auspices of I;he US. Department of Energy 



synchrotron oscillation under phase and radial feedback control [9]. Analysis on topics 

related to RF beam control of a synchrotron is carried out using this model and AGS 

Booster parameters. Cases studied include frequency error, lock-in range, bunch 

excursion, phase manipulation, injection and field errors, 

II. Phase and Radial Feedbacks 

1. Beam Dynamic Model 

The simplified beam dynamic model for synchrotron oscillation can be shown in 

Fig.1, where s is the Laplace operator. Other variables are as follows. 

B is the magnetic field. 

wrf and wid are the cavity accelerating frequency and the ideal beam frequency, 

respectively. 

A4 and AR are the beam phase and radial deviations from the equilibrium state, 

respectively. 

AE and Aws are the beam energy and frequency deviations, respectively, and E 

is the total energy of the particle. 

V is the RF voltage amplitude, which is independently preprogrammed. 

4, is the stable phase, it is determined by the derivative of the magnetic field and 

the RF voltage V. 

p is the ratio of the particle velocity u and the light velocity c. 

R is the mean radius of the accelerator. 

7r is the beam transition energy. 

17 is the frequency slip factor. 
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By inspecting the model in Fig.1, one obtains [9] 

2 

s A4 = _ W’dRmr AR i-SW 

eVcos$, c 
,yAR =-- 

27vr2BE 
A4 

To simplify the notation, we define 

2 
wid qrt 

(2 =- 
R 

; .- 

(2) 

b=- 
e Vcoqb, c 

2v:PE 
(3) 

Thus the equation (1) can be written as 

sA#=aAR +6w (44 
sAR = bA4 (4b) 

where a and b are the machine parameters considered to be constant during the 

period of concern. 

The simplified model can now be represented as in Fig.?. Note that a block T 

has been added for the oscillators and cavities, indicating that all regulations and con- 

trols will go through these elements. Tf the errors from them is neglected, T can be set 

to 1. 

The transfer function from the input frequency perturbation 6w to the radial and 

phase deviations can therefore be obtained by eliminating mi.ed variables in equation 

(4), giving 

where 

f-4 = (-ub )I!? = ( __ 
wid e vqcos4, c 

PTR /3E Y 

(5) 

(6) 

(7) 
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is the synchrotron oscillation angular frequency. 

2. Phase and Radial Feedbacks 

The block diagram including phase and radial feedbacks can be represented by 

Fig.3. In the absence of G,, G, alone represents the phase feedback, and the transfer 

functions from SW to AR and Ad with the phase feedback alone are as follows, 

AR= T&I= T’ _&id= b 
6w 

1 + G,T2 s2 + k,s + f-q 

7-2 
A+=T,bw= l+G T- 6W= 

S 

1 2 s2 + kls + f-l: 
SW 

where we let G, = k,, a simple amplifier. 

When the radial feedback is added, the transfer functions become, 

AR = TgSw= 7-3 
&I= 

b SW 
1 + G2klT3 s2 -I- k,s + !A2 

Ac$ = T6 &I = 
T4 SW = S 

6W 
1 i- G2k,T3 s2 -I- kls -I- i-l2 

where G2 = k2, and 

R = (bk,k, + fl,?)“2 

: .- 

(8) 

(9) 

(10) 

(11) 

(12) 
is the new coherent oscillation frequency under feedback control. For the second order 

system, the term 0 is called the natural frequency. With only the phase feedback, the 

natural frequency equals the synchrotron oscillation frequency given in equation (7), 

_ 

while for phase plus radial feedback, the natural frequency is higher than the synchro- 

tron frequency, as shown in (12). The clamping ratio is defined as 

kl f=z (13) 

If c = 1, the system is critically damped. Thus, it is clear that a phase feedback can 

provide damping, while radial feedback can increase the natural frequency. It has been 

shown that the residual radius error for an unit step accelerating frequency error is [9] 
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1imAR =J- 
t--*03 n2 

Since 0 > Q, a radial feedback can reduce the residual radius error. 

(14 

3. A block Diagram of Beam Control System 

In Fig.4, a complete block diagram of beam control system is shown, where AU ‘* 

denotes the frequency deviation of the bucket, and A$, represents the external phase 

manipulations. Ad, and ARd can be used to represent the beam initial phase and 

radius deviation offsets and the disturbances. 

Also since the beam frequency deviation Aws and radial deviation AR differ only 

by a constant a, the typical output of the beam control system can be represented by 

Ad and AR. 

Note that the phase manipulation signal A4, differs from the driving frequency 

error 6w only by a factor of k,, therefore the fundamental system inputs can be con- 

sidered as 6w, A#, and AR,, or Awd. 

Consequently, the basic system performance can be represented by the equations 

(10) and (ll), as well as the following four equations. 

AR = T7 A& = bs 

s2 i- k,s -I- R2 
A4d 

A# = T, A#d = - s2 Ad 
s2 + k,s -I- i-l” d 

AR=T,AR,=- 
s2 + kls 

s2 + k,s + Cl2 
ud 

AQ=T,,ARd=-( 
a - k,k,)s 

s2 + k,s + S-22 
aRd 

(15) 

(16) 

(17) 

(18) 

In the following studies, the phase feedback gain is represented by G, = k,, and 

we also let G2 = k,. To show examples, the numerical parameters of the AGS Booster 

synchrotron will be introduced. At 30 ms from the beginning of the cycle, the syn- 

chrotron oscillation frequency K?, is about 314 x lO’rad/sec, i.e., 5 KHz. Other useful 
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system parameters are, 

v = 90 KV. 

4, = 0.24 rad = 13.7’. 

p = 0.757. 

E = 1.435 x 10’ eV. 

%.d = 3.388 x lo6 x 27r = 2.129 x 10’ md/sec. 

r;l = - 0.385. 

a = 6.124 x 10’ rad/(?n x set). 

6 = - 161 m /(rad x set). 

With phase plus radial feedback, the natural frequency is chosen as 

n2 = 592 x 10’. Under this condition, three different gains of Ic, will be considered and 

the resulting situations will be compared.. These are, /?,, = 77 x 103, representing 

underdamping, k12 = 154 x 103, representing critical damping, and k13 = 308 x 103, 

representing overdamping. These parameters are chosen under the limitation posed by 

the delays in the beam control loops. 

III. TOPICS ON RF BEAM CONTROL 

In the following, we will discuss some typical situations arising in the operation 

of a synchrotron, using the model presented in Section II. 

1. Accelerating Frequency Error 

For an accelerating frequency error &J, t#he radius and phase responses are shown 

in Figs. 5 and 6, following equations (10) and (ll), respectively. 

assumed to be 0.1 percent, i.e., &J = 213 x 10’ rad/sec. 

responses corresponding to three different dampings are plotted. 

The frequency error is 

For comparison, the 
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The residual radius and phase errors can be shown as 

1imA.R = limsTgX L= 
b 

t-co 841 -3 s 

lim A+ = !ir+“osT, x _?_ = 0 
t-Woo s 

(19) 

(20) 

It is indicated in Fig.5 that the residual radial error is 
213 x lo* x b 

02 
= 5.8 x 10-4m, 

: s 

and in Fig.6 that the residual phase error is zero. Since k2 is always chosen such that 

bk,k, >> Cl*, therefore from (19) the residual radius error ratio can be approximated 

by + 
1 2 

In the design, first the required residual radius error ratio and the damping ratio 

have to be specified. Then by solving equations (13) and (19), together with (12), the 

gains k, and k2 can be found. 

In Fig.6 the responses clearly show two different time constants in the rising and 

in the falling. To estimate the time constant in the rising, we let 

and to estimate the time constant in the falling, we let 

liioTf+ s 
k,s -k R’ (22) 

(21) 

where we note that s+ 00 and s+ 0 represent the properties of the transfer function 

at t---t 0 and t-+ cc, respectively. Therefeore the rising time constant ri can be 

estimated to be equal to 1 
k,’ 

and the falling time constant r2 can be estimated by 

kl 
7. It is clear that as k, increases, the difference between r’]. and r2 will be larger, as 
R- 

shown in the responses in Fig.6. These informations are useful in estimating the sys- 

tem responses. 
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2. Lock-in Range and the Inner Loop 

The phase lock-in range can be estimated by only considering the inner loop, 

which consists of the integrator (phase detector) along with the phase feedback. If 

only this loop is considered, the transfer function from the accelerating frequency error 

to the phase deviation becomes 

Ac$= 1 SW 
s +k, (23) 

Therefore, the lock-in range is estimated as the unity gain bandwidth of this loop, 

which is roughly equal to kl, and is 154 x X03 rad/sec = 24.5 KHz. The higher the kl, 

the larger the lock-in range. One has however to assure that the phase detector and 

the control circuitry is not being saturated before reaching the lock-in range. 

Typically, the phase detector has a linear range of about f 1 rad. From Fig.6, it 

is indicated that the maximum phase deviation due to a 0.1 percent step accelerating 

frequency error is 5.8 degrees with k12 = 154 x 103. Therefore if only the phase detec- 

tor range is considered, we estimate that the maximally allowed accelerating frequency 

error can be about 1 percent, i.e., 34 KHz. This range is larger than, but not far from, 

the estimated phase lock-in range. Sometimes, people use this saturation range to esti- 

mate the lock-in range. 

The bandwidth of the inner loop is usually considerably wider than that of the 

synchrotron oscillation loop. For example,, the bandwidth of the inner loop is 

154 x lo3 rad/sec with k12, and the synchrotron oscillation is only 314 x 10’ rad/sec. 

This is basically because of the fact that the synchrotron oscillation and the radial 

_ 

b feedback have to go through the integration represented by -. 
S 

There are several issues of interest that are related to the inner loop. First let us 

recall the two time constants of the respon.se discussed in the last subsection and 

shown in Fig.6. It is clear by inspection that the inner loop is responsible for the ris- 

-_ 
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ing, i.e., the bandwidth of the inner loop determines the rising time constant. 

Secondly, for an accelerating frequency error, the larger the inner loop gain, the 

smaller the phase deviation. Furthermore the smaller the phase deviation, the more 

sluggish the radial motion. Since the system settles at a certain lev,el of radial devia- 

tion as shown in Fig.5, then this means a longer settling time. This explains that as k, 
: # 

increases, the system becomes more overdamping. Note that the situation of under- 

damping is not concerned here. In the last, one cannot assume all the bunches are the 

same and equally spaced, then the phase detector may receive a frequency component 

that equals the revolution frequency. If the inner loop gain is high enough, then the 

phase feedback may cause unnecessary phase perturbation and therefore the filamen- 

tation. We will not however pursue further on this aspect in this article. 

3. Motion of the Bunch in the Bucket 

The motion of the bunch can be described in phase space as shown in Fig.7. 

Since one would like to avoid undesired filamentation, it is of interest to know the 

bunch motion with respect to the bucket. The amount of motion of the bunch with 

respect to bucket can be used as a criterion for the degree of the filamentation. 

Because the bucket itself is moving during the transient period, the plot in Fig.7 does 

not exactly show the motion of the bunch in the bucket. The motion of the bucket is 

denoted in Fig.4 by Aw, which is plotted in Fig.8, with a 0.1 percent accelerating fre- 

quency step error. Because of this accelerating frequency error, the bucket jumps verti- 

cally by 3.39 KHz, then the signal from the phase deviation A$ is fed back to the 

oscillator, and the bucket is pulled back rapidly. When the phase deviation decreases, 

the bucket bounces back again, and finally it settles at the position that equals the 

final beam frequency deviation ALES. It can be concluded that the bunch phase motion 

in the bucket is the same as that shown in Fig.6, however the radial motion of the 

bunch with respect to the bucket is the difference between the bunch motion Aw, and 

_ 
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the bucket motion AM The motion of the bunch within the bucket can be shown in 

the phase space plot in Fig.9, where we note that the bucket jumps vertically by 

3.39 KHz, hence the bunch equivalently jumps in other direction with respect to the 

bucket by the same amount at the onset of frequency error. The bunches are settled 

down finally at the center of the bucket due to the damping provided by the feedback 

loops. 

Comparing the bunch motion in phase space shown in Fig.7 and Fig.9, one 

notices that the maximum frequency deviation of the bunch from the center of the 

bucket in Fig.9 is much larger than the bunch motion with respect to an ideal bucket 

as shown in Fig.7. 

Let us have a detailed look at the energy deviation of the bunch 

the bucket. The energy deviation is related to the radial deviation as 

by 

and the frequency deviation is related to the radial deviation by 

2 

Awb = 
- Widtl’Yt 

12 AR 

Thus, we get 

Awb zz -widrl& 
p2.E 

Usually, the bucket half height is defined by 

with respect to 

shown in Fig.1 

(25) 

(“7) 

In Booster, at 30 ms from t#he beginning of the cycle, W = 0.25 eVs. Therefore, the 

bucket half height is equivalent to the energy deviation of 5.3 MeV. For a 0.1 percent 

accelerating frequency error, the bucket jumps vertically 3.39 KHz, which is 

equivalent to that the bunch jumps in an opposite direction by 2.1 MeV. This is 
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about 40 percent of the bucket half height, that implies a considerable filamentation. 

Meanwhile, we recall that if only the phase lock-in range is considered, a 

24.5 KHz accelerating frequency error can be allowed. Then, however, the bunch will 

jump out of the bucket. Therefore for this particular machine the lock-in range is not 

of concern in the design and operation. This study shows the necessity in understand- :r 

ing the bunch motion in the bucket. 

4. Phase Manipulation 

The equivalent scheme of phase manipulation control is shown in Fig.4 by A4,, 

which is used for changing bunch shape, debunching, transition phase shifting, and 

the stable phase compensation. The imbalance of the twc phase shifters for the phase 

detector can also be simulated as a step Ad,. The responses of the system in fact are 

the same as the accelerating frequency error responses, except that the transfer func- 

tion gains differ by a factor of k,. For step input, therefore, the responses of radial 

and phase deviations are the same as that in Figs. 5 and 6, though in different scal- 

ings. 

For a purpose of changing bunch shape, or debunching, it is desired to move the 

bunch to a required position in phase space, typically at a certain phase deviation, 

then keep it there for a period of time. We notice that the response of the phase devi- 

ation does not follow the input signal. Thus to achieve a desired phase deviation, the 

control signal has to be manipulated. A typical manipulation is shown in Fig.10, 

where the phase manipulation signal lets the equivalent driving frequency jumping to 

3.39 KHz, then taking a ramp, and Finally turning to flat at 22.6 KHz. The bunch 

therefore can stay at a phase deviation of about 1 2 degrees for a period of 80 psec. 

Using (4b), we know that the radial deviation is an integration of t.he phase deviation, 

then the final radial deviation can be calculated as about 0.4 cm. 

_ 
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Although the equivalent driving frequency moves away from the synchronous 

frequency by as much as 22.6 KHz, because the motion takes a relatively slow ramp, 

the bunch does not jump out of the bucket. The bunch motion in bucket is shown in 

Fig.11. 

In manipulating the phase, one still observes the rule of two time constants, as : z 

shown in Fig.10 by rising and falling edges. The phase deviation tlatop, however, is 

due to the derivative of the phase manipulation signal with respect to time. For this 

portion, the inner loop is again responsible. Thus, the transfer function from Ad, to 

A4 is 

Ac# = 
k1s 

s +k, A6 

where the s in the numerator represents the derivative of the phase manipular.ion sig- 

nal. We note 

b k: = 
s +k, 

kl - 
s +k, 

After the transient response due to the second term on the right, in a time constant 

r1 = kf’, the phase deviation becomes flat, and finally it drops when the ramp of the 

control signal turns to flat. 

5. Stable Phase Compensation 

The stable phase is determined from the rate of the magnetic field variation & 

and the RF voltage amplitude V, 

where p is the radius of curvature of the magnets. 

A stable phase variation can be considered as a disturbance at Add. For a step 

A’dd of 0.1 rad, the responses of radial and phase deviations are determined bj 
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equations (15) and (16), that are shown in Figs. 12 and 13. The response of the radius 

is similar to the phase deviation due to a step accelerating frequency error. The phase 

deviation is however different from any response that has been showed. This response 

again represents largely the property of the inner loop, as the time constant of settling 

of the response is largely determined by the inner loop bandwidth. 
c > 

The bunch motion in phase space and with respect to bucket are shown in Figs. 

14 and 15. Again we observe large difference in vertical motion. In Fig.15, it is shown 

a large vertical jump at onset. This is because that the initial phase deviation affects 

the bucket immediately through the phase feedback. The amount is determined by 

k, x A$d. In this case if we take k12, then the bucket jumps negatively by 2.45 KHz. 

Therefore a 0.1 rad step stable phase variation is significant for the filamentation. 

The residual errors due to a step Ab, are as follows, 

1imAR =limsT7xL=0 
f-+aY .Y+O s 

lim A# =. !izsTs x ?- = 0 
t-+aJ S 

(31) 

(32) 

i.e., both are zero, which implies that if only residual errors are concerned, then the 

stable phase variation does not need correction. 

For the transient effect, the stable phase variation can only be corrected through 

the phase manipulation A$, . The responses of the variation of stable phase are deter- 

mined by T, and T,, meanwhile the phase manipulation through Ac$, induces 

responses as by T5 and Te. A perfect compensation therefore is difficult to achieve. 

Note that T5 and T6 differ T7 and T8, disre,garding scalings, only by a differentiator 

s, therefore if the transient stable phase compensation is needed, a manipulation on 

the correcting signal from (30) by a differentiating can be considered. 

- 

With variations of & and V in the acceleration, the stable phase is also varying. 

It is of interest to know, for example, in determining the E and k- program how 
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much the corresponding radius and phase deviations will be. We show in Fig.16 the 

radius deviation due to stable phase variation during the acceleration of the Booster, 

using (15). Disregarding the period of rapid variations of the stable phase during RF 

capture, the typical radial deviation is less than 4 x 1O-7 m. We also calculate that 

the typical phase deviation is about 25 x lo-’ t-ad. Therefore, 

significant. On the rapid stable phase variation, which happens 

these effects are not 
:. 

at the RF capturing 

period, it can be calculated that the correcting signal is at a range of 0.01 percent of 

the accelerating frequency. 

6. Injection Errors 

The injection frequency error can be simulated as Awd, which is equivalent to a 

radius deviation of Q x ARdr and the injection phase error can be simulated as Abd, 

both in steps. 

First, we discuss the frequency error. Similar to (17), the transfer function from 

Awd to Awb is 

AC+, = T,, Aw, = - 
s2 i- k,s 

Awd 
s 2 -I- k,s -I- 0 

The response of Aw6 for 0.01 percent frequency error is shown in Fig.17. Note that 

the settling time is much longer than the one of A4 due to Add as shown in Fig.13. 

This is because that in this case the response is dominated by the radial loop, rather 

than the fast inner loop. 

The responses of Aw6 due to a combined 0.2 rad phase error and a 0.01 percent 

frequency error are shown in Fig.18. It looks as if the phase error does not affect much 

the response. However, from the bunch motion in bucket shown in Fig.19, with only 

the frequency error, and the motion in bucket shown in Fig.20, with both frequency 

and phase errors, it is clear that the phase error causes significant bunch motion with 
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respect to bucket. For instance, with lir2, a 0.2 rad injection phase error can let the 

bucket to jump about 7 KHz, almost to leave the bunch out of the bucket. If the 

phase error cannot be reduced, then Icr has to be reduced, or even the phase loop may 

have to be disconnected at the injection. 

7. Magnetic Field Error 

The magnetic field error has two effects. One is shown by an accelerating fre- 

quency error, due to the magnetic field error AB itself. This error however can be 

neglected provided a fast frequency synthesizer and a good magnetic field marker are 

: c 

available. Another is that the corresponding magnetic field variation rate b will 

affect the stable phase. If this variation is large, then it needs to be corrected. 

We take the effect of the Eooster main magnet ripple as an example. The main 

magnet voltage is 4.8 10’ at maximum. The 1440 Hz ripple after the passive filter 

can be assumed to be 30 V, which corresponds to a fi = 0.05 Tesla/sec. Taking the 

crest RF voltage as 90 KV, following (28), the stable phase variation is calculated to 

be 0.09 degrees, which is negligible. 

TV. Conclusion 

A simplified 

back control has 

and Discussion 

linear model of synchrotron oscillation under phase and radial feed- 

been introduced and several typical situations frequently appearing 

in accelerator operation have been studied using this model. This method provides a 

unified approach to the analysis of longitudinal motion in a synchrotron and the 

results are presented in a natural and clear fashion. 

Similar method will be applied to investigate the bunch behavior during synchro- 

nous transfer bet,ween two synchrotrcns, sta.tic and transient beam loadin;s, and the 

situation in passing through phase transition. Such analysis lvill contribute to the 
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design of a new synchrotron and improvement in performance of the ones under 

operation. 
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Fig.3. Block Diagram of Phase and Radial Feedbacks 
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Fig.4. Block Diagram of Beam Control System 
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Fig.18. Awb due to Combined 0.01 Percent Frequency Error and 0.2 rad Phase Error 

__ 



- 27 - 

HZ 

2588 

2808 

1508 

iti80 

580 

r 

-8.2 fl 0.2 8.4 8.6 6.8 1 

deg. 

Fig.19. Bunch Motion in the Bucket, with only 0.01 Percent Frequency Error. 
Vertical is Awb-Aw, horizontal is Ad. 
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Fig.20. Bunch M otion in the Bucket with both 0.2 rad Phase Error and 0.01 Percent 
Frequency Error. Vertical is Aw~-A~, horizontal is Ad. 


